
A User-friendly Approach to Write and Enforce Rules for
Detecting Anomalous Network Traffic in IoT Environments

Davino Mauro Junior
Federal University of Pernambuco (UFPE)

Recife, Brazil
dmtsj@cin.ufpe.br

Kiev Gama
Federal University of Pernambuco (UFPE)

Recife, Brazil
kiev@cin.ufpe.br

ABSTRACT
Enforcing security on IoT devices is not an easy task, due to several
vulnerabilities in many products that reach consumer shelves. With
the rapid growth of the IoT market in the recent past there are spe-
cific network attacks targeting IoT devices, thus it is paramount to
create mechanisms aiming this niche. Network Intrusion Detection
Systems (NIDS, or IDS for short) can be used to employ defenses
and detect anomalous traffic on IoT networks. However, due to the
nature of these tools and the typical sysdamin users they target, us-
ability is not one of the main concerns, with tools usually available
through console and also demanding very specific network knowl-
edge market. Since a large share of the IoT market is represented by
consumers on Smart Home contexts, usability must be treated as a
crucial feature on IDS systems that target IoT environments. We
present a user-friendly approach that helps writing rules to enforce
the detection of anomalous behavior on network traffic in IoT net-
works. This approach was applied in our platform that works as an
IDS system monitoring network traffic that continuously applies
rules programmed by its users or administrators.

CCS CONCEPTS
• Software and its engineering→ Software usability; • Security
and privacy→ Intrusion detection systems.
KEYWORDS
Internet of Things, security, intrusion detection systems, usability
ACM Reference Format:
Davino Mauro Junior and Kiev Gama. 2020. A User-friendly Approach
to Write and Enforce Rules for Detecting Anomalous Network Traffic in
IoT Environments. In IEEE/ACM 42nd International Conference on Software
EngineeringWorkshops (ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3387940.3392248

1 INTRODUCTION
There are different approaches and tools addressing attacks where
Internet of Things devices are targets. Among these solutions, one
type stands out, Network Intrusion Detection Systems (NIDS, or
IDS, for short). Essentially, IDS are tools (either hardware, software,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392248

or both) used to monitor network traffic by looking for suspicious
behavior [12]. Due to the rapid growth of the IoT market, which
is represented mostly by consumers on Smart Home contexts [3],
it is important for these systems to be easy to use and extend. For
example, in a real world scenario where one of these systems is
employed in a Smart Home context, the user should be able to
create new rules that map anomalous communication patterns. The
capability of a system that allow creating new rules to match other
patterns of anomalous enable to be always prepared to detect new
threats. For that, usability must be a crucial point of these sys-
tems. However, previous work showed that usability was a difficult
challenge for traditional Intrusion Detection Systems (IDS)s as the
rules created and enforced on these systems were non-intuitive and
difficult to understand [14]. Normally, providing ways to add new
rules to the tools as to enable them to target detect more attacks, it
is overly complicated even to IT domain’s users[2, 14].

In this work, we propose a platform that enables users to create
rules in an intuitive way with an user-interface (UI), while keeping
the core of an Intrusion Detection Systems (IDS) with network
monitoring and detection of anomalies using a pattern-matching
method, commonly used on Signature-based Intrusion Detection
Systems (IDS)s. As a preliminary evaluation of the platform’s us-
ability, we compare it with a traditional open-source IDS, Suricata
[8]. We focused specifically on the process of creating the rules
with a brief comparison of these systems, providing examples of
rules for a DDoS attack.

2 BACKGROUND AND RELATEDWORK
2.1 Intrusion Detection Systems
An IDS is a tool that analyze network traffic by monitoring network
nodes (e.g., the IoT devices) and its data packets with the goal of
detecting suspicious behavior [12]. This analysis is usually done
by identifying signature of well-known attacks. Once detected, the
IDS triggers an alert to the users or even an automated response
such as disconnecting a suspicious device from the network. In this
work, we focus on Signature-based IDS due to its popularity on the
IoT context [12]. There are mainly three types of IDS [6]:

Anomaly-based IDS. An anomaly represents a deviation of an
expected behavior, which on network contexts comes from moni-
toring regular traffic, devices, users, etc. Events can be either static
or dynamic, e.g., failed login attempts and count of emails sent. An
Anomaly-based IDS compares normal traffic and looks for these
type of events to recognize possible threats [5].

Specification-based. This type of IDS is similar to Anomaly-
based IDS in the sense that they also detect a deviation from the
expected behavior. However, instead of using a predefined set of

https://doi.org/10.1145/3387940.3392248
https://doi.org/10.1145/3387940.3392248

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Davino Mauro Junior and Kiev Gama

events to detect an anomaly, this type of IDS uses manually devel-
oped specifications that capture legitimate system behaviors [11].

Signature-based IDS. A signature-based IDS employs a pattern
matching strategy where the system uses a predetermined set of
well-known patterns to detect whether the incoming monitored
network packets are malicious or not [6]. Popular tools of this type
(e.g., Zeek, Snort, Suricata) enable users to create their own rules
and share them through the community, amplifying the capability
to detect network threats as users can download the shared rules.

2.2 IDS and IoT
Many solutions addressing security concerns on IoT networks
emerged recently. Considering Intrusion Detection Systems (IDS)s,
specifically Signature-based ones that make use of pattern matching
to detect threats, few of them have its focus on IoT contexts. SVELTE
is one such Intrusion Detection Systems (IDS) which focuses on
targeting specific routing attacks such as spoofed or altered infor-
mation, sinkhole, and selective-forwarding while presenting small
overhead, a crucial feature when it involves constrained networks
such as IoT environments [10]. IoT-IDM presented a Host-Based
Intrusion Detection Systems (IDS) focusing on Smart Homes IoT [7]
where a software-defined network and its protocol, OpenFlow, was
used to detect intrusions with customized machine learning tech-
niques and learned signature patterns of known threats.

The work of Werlinger et al. [14] showed that other than the
expected difficulties involving configuration of IDSs, usability was
a crucial challenge when using the system as the rules enforced
by Intrusion Detection Systems (IDS)s are mostly non-intuitive
and difficult to understand. In this work, we proposed a platform
that focus on tackling this problem by enabling users to create
Intrusion Detection Systems (IDS) rules in an intuitive way while
also enforcing these rules with a real time monitoring and analysis,
similar to traditional Intrusion Detection Systems (IDS)s.

Other studies have focused on variables such as performance,
memory consumption and number of false positives/negatives by
replicating network traffic while running the Intrusion Detection
Systems (IDS)s. For instance, a comparison of two open-source
Intrusion Detection Systems (IDS)s, Suricata and the system that
originated it, Snort [1], pointed out that Suricatarequired more
memory and CPU resources than Snort due to its multi-thread
architecture. However, Snort’s need for multiple instances running
to accomplish what Suricata does counter this factor. In terms of
false positive/negatives, the study was inconclusive on which of the
Intrusion Detection Systems (IDS)s has a better detection algorithm.

3 RULE WRITING APPROACHES COMPARED
We present two platforms that act as IDSs that support an extensible
approach where new rules for detecting anomalous communication
patterns can be added to the system. Suricata was chosen due to its
popularity, for comparison to our platform [4] in a brief discussion.

3.1 Suricata
Suricata [8] is an open-source Signature-based IDS based on Snort [13]
(rules written on Snort can also be used on Suricata interchange-
ably). One improvement over its predecessor, however, is that Suri-
cata incorporates a new Hyper-Text Transfer Protocol (HTTP)

1 alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ET

DOS ICMP Path MTU lowered below acceptable threshold

"; itype: 3; icode: 4; bytes_test :2,<,576,6;

byte_test :2,!=,0,7,sid :2001882; rev :10;)

Listing 1: Suricata’s Rule to detect an ICMP Flood Attack

parser capable of examining HTTP traffic for traditional attack-
threats that were known for circumventing Snort along with older
IDSs.

3.1.1 Rule writing approach. A rule on Suricata is the defacto
method for detecting threats using this platform. Being a Signature-
based IDS, Suricata uses these rules (or signatures) to match them
against the network traffic [9]. A rule consists of three components:

• Action: Determines what happens when the signature is
matched;

• Header: Defines the protocol, IP addresses, ports and direc-
tion of the rule;

• Rule Options: Define the specifics of the rule.

Consider the rule shown at Listing 1, which serves the purpose of
generating an alert in case an ICMP Flood Attack is detected. In this
example, the part "alert" is the action, "icmp $EXTERNAL_NET any
-> $HOME_NET any" is the header and the remaining text are the
options of the rule. For the action, you have four different values
(pass, drop, reject and alert), all self explanatory and reflecting
actions to be taken involving the network packets. For example, the
alert word means that it would trigger an alert when a signature
matches a network pattern. On Suricata, the alert means a message
on the console, with additional actions being possible using external
solutions such as Firewalls that capture Suricata’s events.

The part concerning the header options contains three main
points: (i) protocol; (ii) source and destination addresses; and (iii)
port addresses. The protocol tells Suricata which network protocol
it looks while trying to match the signature to the network packets.
Currently Suricata accepts four basic protocols TCP, UDP, ICMP
and IP network packets together with seven different applications
protocols such as HTTP and SMTP. The addresses and ports tell
Suricata which direction to consider when trying to match a signa-
ture to a certain network flow. Still considering Listing 1, the "$EX-
TERNAL_NET" part represents the source of the traffic whereas
"$HOME_NET" represents the destination of the traffic (notice the
direction of the directional arrow between them). The variables
"HOME_NET" and "EXTERNAL_NET" tells Suricata to consider all
addresses on the local and external network, respectively. Notice
that, instead of variables, one can also choose to specify IP addresses
(both IPV4 and IPV6) as well as IP ranges. The user also can specify
which specific port to consider, both on source and destination. The
word any can be used interchangeably here, meaning any port.

After creating the rule file (with a .rules extension), a user has to
edit Suricata’s main configuration file (usually located on /etc/suri-
cata/suricata.yaml) and add the name of the newly created file (as
seen in Figure 1). Finally, the user (re)compile Suricata by restarting
it so it can reload the configuration file and the newly created rule.

A User-friendly Approach to Write and Enforce Rules for Detecting Anomalous Network Traffic in IoT Environments ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 1: Suricata’s Main Configuration File

3.2 Our platform: IoT-Flows
We are developing a platform that focuses on surveilling communi-
cation between IoT devices. It acts on the different network layers,
providing a multilayer defense for IoT environments, and being able
to monitor the traffic on the different WiFi networks that the smart
devices are connected to. It also provides extensibility, allowing
the user of the system to incorporate new attacks into the defense
model, in the form of Complex Event Processing (CEP) rules, which
consists of an approach that allows the system to analyze streams
of data in real-time. We have developed patterns against attacks in
three TCP/IP layers: Network, Transport, and Application layers.
For instance, while monitoring the network, the system is able to
detect that an IoT device is being targeted for Acknowledgement
Spoofing with a fake device trying to masquerade the official de-
vice. At the same time, on the transport layer, the attacker would be
flooding the IoT device with multiple requests, also acting on the
application layer, trying to masquerade normal behavior requests,
like turning the device on/off. The system is able to detect any
of these behaviors while monitoring the network traffic and ap-
plying pre-configured rules that analyze the packets being sniffed.
Once a suspicious behavior is detected, the system can alert the
user or block all requests directed to the IoT device in question,
thus stopping the attack. IoT-Flows allows the user to download
new security patches that provides detection of new attacks while
also providing manual configuration if needed. We have tested the
approach of having an extensible mechanism based on Complex
Event Processing rules that allows to easily include the identifica-
tion of new attacks. Some drawbacks are the need to understand
the rule language of the CEP Engine, Esper1, and understanding
the metadata of the packet structure in order to write the rules.

3.2.1 Rules mechanism. A rule on the IoT-Flows platform is repre-
sented by a pattern. The PatternMapper enables users to seamless
create a rule through a UI, while also having an API that is actively
consumed by the CEP Analyzer component in real time as to
reconfigure the rules being used on the IoT-Flows platform.

Users can see which rules are active at any moment while also
create, edit and delete rules, as per Figure 2. These rules represent
1www.espertech.com/esper

the direct input for the Analyzer component (together with the
network data beingmonitored). They are built internally as SQL-like
queries and matched against the network packets being monitored.

Figure 2: A set of rules beind listed on IoT-Flows

For the example on Figure 2, the rules being showed are used for
detection of the ICMP Flood attack. There are three rules, the first
one being the main one and representing a pattern that evaluates
whether the field ICMPType of the packets (Term) "is equal to"
(Operator) the value 3 (Compared Value). The second rules extends
the first and has the same goal, this time using the ICMPCode field.
Finally, the last rule tells the Analyzer component to group the
network packets by their MAC address (represented by dstAddrMac
on the packet) and look for matches of these three rules on 250 or
more cases (Type Variable). These rules are compiled internally by
the Analyzer and together form the full signature for detecting an
ICMP Flood Attack.

Figure 3: Form used to create a rule on IoT-Flows

Figure 3 shows the UI that enables the users to create a rule on
IoT-Flows and contains the necessary network packet’s fields. It
also supports some advanced queries such as nested queries, with
the usage of the "Parent rule" field exposed in the UI. Any rule to
be create would basically be under the following template, where
most UI fields are self-explained:

SELECT {Term|*} FROM NetworkPacket
[WHERE {Term} {Operator} {ComparedValue}]
[GROUP BY {Group_By_Terms}]
[HAVING COUNT(*) {AdditionalTerm} {TypeVariable}

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Davino Mauro Junior and Kiev Gama

1 SELECT * FROM NetworkPacket

2 WHERE ICMPType = 3

3 GROUP BY srcAddrMac

4 HAVING COUNT (*) > 250

Listing 2: Rule to detect an ICMP Flood Attack in our
platform

An example of a generated rule is presented in Listing 2, which
shows a rule for detecing an ICMP flood attack.

3.3 General Comparison

Figure 4: Suricata’s Process for Creating a Rule

Figure 5: Process for Creating a Rule in IoT-Flows

The process of creating a rule for Suricata can be seen in Fig-
ure 4. First, the user should create a file adding the name of the
newly created file with the extension ".rules", that denotes a rule
to be loaded by the Suricata platform. Then, the user writes the
signature on this file as in Listing 1. Notice this assumes that the
user had either analyzed the network traffic as to obtain sufficient
information for identifying a signature of an attack or obtained
this information elsewhere. After creating the rule file, Suricata’s
main configuration file has to be edited and the name of the newly
created file has to be added to it. In the last step, the user has to
recompile the rule by restarting Suricata, so it can load all rules,
including the new one.

Figure 5 illustrates the process for creating a rule or pattern
on our platform. The user accesses the UI system, where existing
rules are listed, then initiates the process for creating a new rule,
which requires using the predetermined UI fields. Then the rules is
automatically loaded into the platform.

When comparing both approaches, it can be seen that our ap-
proach takes less steps than Suricata. In addition, the manual steps
from Suricata may hinder the adoption by less experienced users.
The UI provided by our platform makes it more attractive to those
who are not comfortable using the command line or dealing with
configuration files. In addition, the level of complexity from the
rules syntax in our platform resembles the popular SQL approach,
as it can be seen in Listing 1 and Listing 2.

4 CONCLUSIONS AND FUTUREWORK
Currently there are many security flaws in IoT devices and appli-
cations that have been exploited by malware. IDSs are tools that

allow analyzing network traffic by monitoring network nodes (e.g.,
the IoT devices) and its data packets with the goal of detecting
anomalies in network communication. Some IDS solutions have
recently started to address security concerns specific to IoT net-
works. In some IDSs, users are able to write themselves the rules
that map the patterns of suspicious communication. However, these
systems were non-intuitive and difficult to understand, thus being
too complicated even to IT domain’s users. We proposed a platform
that enables users to create rules in an intuitive way with a user-
interface (UI) and an underlying engine that allow matching the
patterns written on those rules to detect anomalous communica-
tion. We compared our approach agains Suricata, one of the most
utilized IDSs. Our approach is promising, since it presentes a UI
that avoids users to deal with syntax details of the rules and keeps
them away from dealing with the command-line or configuration
files. As future work, we intend to evaluate our approach under the
perspective of users. We also see the possibility of integrating this
approach with other tools such as Suricata.

ACKNOWLEDGMENTS
This work is supported by RNP (Brazil) under Grant No. 002951
and by NSF (USA) under Grant Nos. 1740897/1740916.

REFERENCES
[1] Eugene Albin and Neil C Rowe. 2012. A realistic experimental comparison of

the Suricata and Snort intrusion-detection systems. In 2012 26th International
Conference on Advanced Information Networking and Applications Workshops.
IEEE, 122–127.

[2] Dr Saad Butt and Vera Anatol’evna Gnevasheva. 2018. Efficiency in the Processes
of Intrusion Detection System Through Usability Evaluation Methods. Available
at SSRN 3151216 (2018).

[3] Forbes. 2005. 2017 Roundup Of Internet Of Things Forecasts.
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-
of-internet-of-things-forecasts/#7b71aae11480

[4] Davino Mauro Junior, Walber Rodrigues, Kiev Gama, José A. Suruagy, and
Paulo André da S. Gonçalves. 2019. Towards a multilayer strategy against attacks
on IoT environments. In Proceedings of the 1st International Workshop on Software
Engineering Research & Practices for the Internet of Things, SERP4IoT@ICSE 2019,
Montreal, QC, Canada, May 27, 2019. IEEE / ACM, 17–20.

[5] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung.
2013. Intrusion detection system: A comprehensive review. Journal of Network
and Computer Applications 36, 1 (2013), 16 – 24.

[6] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel, and
Muttukrishnan Rajarajan. 2013. A survey of intrusion detection techniques
in Cloud. Journal of Network and Computer Applications 36, 1 (2013), 42 – 57.
https://doi.org/10.1016/j.jnca.2012.05.003

[7] M. Nobakht, V. Sivaraman, and R. Boreli. 2016. A Host-Based Intrusion Detection
and Mitigation Framework for Smart Home IoT Using OpenFlow. In 2016 11th
International Conference on Availability, Reliability and Security (ARES). 147–156.

[8] OISF. [n.d.]. Suricata Open Source IDS. https://suricata-ids.org/
[9] OISF. [n.d.]. Suricata Rules. https://suricata.readthedocs.io/en/suricata-4.1.5/

rules/intro.html
[10] Shahid Raza, Linus Wallgren, and Thiemo Voigt. 2013. SVELTE: Real-time intru-

sion detection in the Internet of Things. Ad hoc networks 11, 8 (2013), 2661–2674.
[11] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou.

2002. Specification-Based Anomaly Detection: A New Approach for Detecting
Network Intrusions. In Proceedings of the 9th ACM Conference on Computer and
Communications Security (Washington, DC, USA) (CCS ’02). Association for
Computing Machinery, New York, NY, USA, 265–274.

[12] Tariqahmad Sherasiya, Hardik Upadhyay, and Hiren B Patel. 2016. A survey: In-
trusion detection system for internet of things. International Journal of Computer
Science and Engineering (IJCSE) 5, 2 (2016).

[13] Sourcefire. 1998. Snort. https://www.snort.org/
[14] Rodrigo Werlinger, Kirstie Hawkey, Kasia Muldner, Pooya Jaferian, and Kon-

stantin Beznosov. 2008. The Challenges of Using an Intrusion Detection System:
Is It Worth the Effort?. In Proceedings of the 4th Symposium on Usable Privacy and
Security (Pittsburgh, Pennsylvania, USA) (SOUPS ’08). Association for Computing
Machinery, New York, NY, USA, 107–118.

https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#7b71aae11480
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#7b71aae11480
https://doi.org/10.1016/j.jnca.2012.05.003
https://suricata-ids.org/
https://suricata.readthedocs.io/en/suricata-4.1.5/rules/intro.html
https://suricata.readthedocs.io/en/suricata-4.1.5/rules/intro.html
https://www.snort.org/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Intrusion Detection Systems
	2.2 IDS and IoT

	3 Rule Writing Approaches Compared
	3.1 Suricata
	3.2 Our platform: IoT-Flows
	3.3 General Comparison

	4 Conclusions and Future Work
	Acknowledgments
	References

